PhoenixMP Oh dear, you found us !
mail@phoenixmp.com | Telephone/Fax: +44 (0) 1626 332287
 
 
Click on fast link above or

Shopping

Please click for On-Line Shop

PMP On-Line Shop

About Us

Read about PMP's history and philosophies

What We Sell

View a full listing of products sold by PMP

Shopping at PMP

An overview of shopping at PMP

Come Visit Us

We are always happy for modellers to drop in and shop. Here are directions, give us a call to let us know you're coming.

Agents/Suppliers for:-

 

BAe Hawk

1190 mm Span

EPP Power Scale Slope Soarer

Designed by Stan Yeo

Produced by PHOENIX MODEL PRODUCTS

Introduction

The BAe Hawk is a stylish crash resistant character scale EPP slope soarer designed for the sport flyer looking for something different. It will fly in relatively light winds up to very strong winds with added ballast. Whilst the inverted performance is limited this is more than compensated for by its manouvreability and docile handling characteristics which also make it suitable as an aileron trainer. The BAe Hawk is used as a fast jet trainer in the RAF and the USAF as well as being the aircraft flown by the world famous RAF Red Arrows aerobatic team. It is also used by a number of countries as a ground attack aircraft. The Hawk is so fuel efficient that with full fuel load it can fly around the coast of the United Kingdom! Building time is anything from 10-15 hours depending on the care taken and the finish required i.e. whether decorated using coloured vinyl tape or as, like the protoype, covered in an iron film such as Easycoat.

Tools / Materials & Adhesives Required

The only tools / materials required are a modelling knife with spare blades, a pair of sharp scissors, 180 grade Wet & Dry sanding block and a soldering iron. Glues used area impact adhesive such as Evo-Stik or Bostik All Clear Adhesive for EPP foam joints. Two part Epoxy for fitting the wing spars and wing braces plus joining the wings. Runny Superglue for gluing the balasa blocks and a can of Spray Impact adhesive such as Stikatak for fitting the ply doublers. Sellotape Diamond for fitting the Fin to the Tailplane and hinging the ailerons in a two servo wing installation. The covering material can be either an iron film or coloured vinyl tape. Please observe all safety precautions on containers. Impact adhesive is used for all 'foam' joints EXCEPT the mainspars and the wing brace where Epoxy is used. Superglue is used for all wood to wood joints except wing brace.

R/C Equipment

The R/C equipment used in the prototypes consisted of standard size servos for the elevator and ailerons (single servo installation), HS300 size, a square 700mA nicad pack and a Hitec / GWS mini Rx. For the twin aileron servo installation any mini / metal gear micro servos can be used. We recommend the Perkins SuperTec 3002BB minis or the Hitec HS81MG servos. If you are using a computerised transmitter then the ailerons can also be used as flaps and coupled with the elevator in which case a 6 channel receiver such as the GWS 8 channel Micro Rx will be required. All the items mentioned are available from PMP.

Building the Fuselage

  1. Lightly sand the fuselage and doublers with 180 grade wet and dry. Remove dust with a small brush or vacuum cleaner.
  2. Glue nose & tail sections together using impact adhesive and drill wing dowel holes in ply nose doublers in positions marked.
  3. Cut 1.5mm x 12mm hardwood strip rear fuselage / tail doubler to size.
  4. Glue nose and rear fuselage / tail doublers in position using impact
    adhesive.
  5. Drill dowel holes in foam. Glue nose former in position. Fit B1, B2, B3 & B4 12mm balsa blocks in position (fit wing dowels and use as a guide to get fuselage square).
  6. Fit elevator servo to 12mm square blocks. Glue blocks / servos in position with blocks close to top of ply doubler.
  7. Join fuselage at rear using small EPP block supplied in kit.
  8. Dry fit fuselage top. Pin in position and trim to shape. Do same to fuselage bottom.
  9. Mark elevator hinge line on Correx tailplane and remove strip of plastic on one side to form hinge line. The elevator hinge line is 6 whole flutes (32mm) forward of the trailing edge at fuselage joint. Push fit elevator joiner in position.
  10. Fit Fin to Tailplane using strip of Sellotape Diamond. Glue tailplane to fuselage. Fit fuselage top (front & rear), cockpit, nose bottom and nose block.
  11. Check which side the control rod must be connected to the elevator servo for the controls to operate in the correct sense and plan route for elevator control rod.
  12. Install elevator control rod. Bore hole in foam by heating the end 10mm of elevator control rod. Drill and fit control rod. Tape control rod to inside of fuselage using CW tape.
  13. Fit fuselage bottoms checking that fuselage is not bent or twisted.
  14. Cover fuselage using CW tape. In restricted areas such as the base of the fin etc strip CW tape to 25mm wide. In high stress areas such as under the leading edge of the tailplane and above the wing trailing edge apply an EXTRA layers of tape for added strength.

Building the Wings.

  1. Lightly sand wing surfaces and remove dust as before. Using a SHARP scalpel and straight edge trim spar slots to size. Unfortunately due to restriction in the CNC foam cutting machines tapered wings produce tapered spar slots. Remove waste from wing brace slot.
  2. Fit 3mm x 10mm hardwood trailing edges using impact adhesive.
    Ensure that the TE is straight otherwise difficulty will be experienced in fitting the ailerons.
  3. Fit top wing spars using Epoxy, cut to length and join wings.
  4. Fit main wing spar brace and bottom wing spars, again using Epoxy. Trim spars to length and shape wing tips. Fit 3mm rear wing brace.
  5. If fitting individual wing servos cut boxes for the servos in the wing behind the main spar. Distance from wing joint will depend on the length of servo lead. If servo lead is too short use servo extension leads to allow mounting of the servo further outboard. With mini servos the servo may protrude slightly from top of the wing.
  6. If using a single servo to drive the ailerons mount the servo along the wing join behind the mainspars and use the torque rods supplied. Relieve ply doubler and Block B4 to accommodate aileron torque rods to prevent binding and any unnecessary friction. Use 50mm Cross Weave Filament tape (CW tape) to tape torque rods to wings.
  7. Make a rectangular template of the aileron servo(s) ignoring lugs but allowing for output arm and cut rectangular hole(s) in wing. Servo(s) should be a snug fit in hole. If fitting outboard wing servos use foam block removed to restore wing lower surface and a hacksaw blade to cut recess for servo lugs.
  8. Before covering the wing with CW tape remove the aileron servo(s) and prime the foam with a spray on impact adhesive (Stikatak). Hold nozzle 40 to 50 mm away from foam and allow 10 minutes for solvent to evaporate before covering.
  9. Cover wing with CW tape. Start by laying a strip along the TE of each wing panel. Each strip should overlap the wing joint by 100mm each side. This provides increased strength and stiffness at the wing joint. Work forward, bottom first, overlapping the previous strip by 5-10mm. At the leading edge overlap tape by 10 mm.
  10. Cut ailerons to size (allow a 10mm gap between fuselage side and end of aileron. Shape aileron leading edge (see plan for single servo operation|). The ailerons are top hinged for twin servo installation and centre hinged for single servo installation.
  11. Cover the ailerons, starting at TE using either CW tape or coloured vinyl tape etc.
  12. For single servo aileron operation use CW tape to attach aileron torque rods to wing and to tape ailerons to torque rods (see plan). Hinge ailerons as per the plan using Sellotape Diamond.
  13. Decorate model using stick on trim such as Protrim / Solartrim / Fablon or coloured vinyl tape which is available from PMP. Alternatively an iron-on film such as Easycoat can be used (Easycoat comes highly recommended and is a polyester film with excellent shrinkage properties). To film cover Correx surfaces it is recommended that 'spray' impact adhesive is used in conjunction with a cool iron. BEWARE the Correx is easily distorted by heat.
  14. Fit control linkages and adjust to obtain required throws (see flying section).

Flying

  1. Set the controls to give the following movements for initial flights
    • Elevator +/- 12mm
    • Ailerons +/- 15mm
    • Flaps (if fitted) +/- 7mm
  2. Adjust balance to within recommended limits (130mm +/- 5mm from LE). Prototypes required 20 - 40gms of lead in the nose. Check alignment of wing and tailplane and wing to tailplane incidence (bottom of flying surfaces should be parallel). Laterally balance wing and check that it is not twisted. If the wing is twisted, twist back in the required direction and re-smooth covering tape with warm iron. If model is fitted with flaperons check zero flap is in fact zero flap otherwise performance will be impaired!
  3. Please remember all aerobatic manoeuvres require energy in the form of speed to perform the manoeuvre. If the model has insufficient speed it will fail to complete the manoeuvre or perform it half-heartedly. Vertical or near vertical dives are not an efficient way to build up speed. A 30 deg. dive is much more efficient. Avoid sudden control inputs. In most cases all they do is scrub off speed and lose height. Try to fly smoothly as not only do the manoeuvres look better but you will be able to perform more of them before having to regain height.
  4. Pay particular attention to positioning and where others are in the sky.
  5. If the lift is good or you are having difficulty penetrating into wind try taping ballast under the balance point. This will increase penetration and help the model maintain speed through the manoeuvres.
  6. The suggested control settings are a starting point and can be adjusted to suit your personal tastes. Adjust the balance point so that when the model is trimmed the elevator is more or less in the neutral position.
  7. The BAe Hawk will take a lot of punishment far more than any equivalent wood, foam or moulded model. It is excellent for building confidence and will add another dimension to your flying but please remember if you take a big enough hammer to anything it will break. Store the model away from direct sunlight in a cool place as the CW tape degrades in UV light. Do not rest anything on the Correx tailplane as this will deform it.
  8. Finally should you require further assistance or advice please contact us either by letter, telephone, email or visit our website (http://www.phoenixmp.com) where you will find useful information on sloping etc.

Happy flying

Stan Yeo

BAe Hawk 020623

Information

Top Slope Sites

New to slope soaring or want to visit a new site. Check out the PMP slope site listings.

What's On

See which shows PMP will be attending this year

The Phoenix Range

Read about the design principles behind the PMP range of models

Magazine Articles

Articles written by Stan Yeo for national magazines on a wide range of topics

EPP Instructions

On-line instructions on how to construct our EPP Models

Useful Links

Links to Club Sites and Product Information.